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1. Industrial motivations



Clogging of steam generators (SGs)

» Clogging of SGs is a complex multiphysics phenomenon that occurs
following long operational periods in pressurized-water reactors
(PWR) of the French nuclear fleet — undermines performance &
weakens the structures — may require chemical cleanings

Source: IRSN

Machine rooms.
{nuciear zone) (non-nuciear zone)

Figure: PWR scheme, and example of video examination during an
PWR outage ((© IRSN, EDF)



Clogging of SGs

» No state-of-the-art model allowing for ground insights on diagnosis
and prognosis of clogging rate 7. — very hard to model &
challenging to create reproducible lab experiment for model
validation + not a lot of literature [Srikantiah and Chappidi, 2000;
Prusek et al., 2013; Girard, 2014; Yang et al., 2017]

» Available scarce video field data as well as indirect measurements —
allow to construct data-driven regression algorithms [Pinciroli et al.,
2021] =~ not enough data to have robust predictive models

» Another tool is the physical clogging model developed by [Prusek
et al., 2013] — subsequent numerical model THYC-Puffer-DEPO
[Feng et al., 2023] ~ lack of enough trustworthy field data for
precise validation

» Necessary decision-making on chemical cleaning planning under
uncertainty — how to make use of the available knowledge and
models for achieving reliable predictions?



Towards digital twins (DTs) in nuclear industry

» Growing interest of creating digital twins for nuclear industry —
many industrial challenges to address

Actions &

Recommendations

-

Figure: DT methodologies for nuclear reactors [Vaibhav and al., 2023]

» Stepping stone towards the elaboration of DT for SGs at EDF —
more details in E. Remy’s talk - MS018D on Friday morning
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The long-term clogging model

Matter deposition
Te
Tube support
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Matter transport
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Figure: Clogging physical model

» Clogging results from two main mechanisms — vena contracta &
flashing [Prusek et al., 2013]

» Long-term clogging model [Feng et al., 2023] — must change
stationary thermohydraulics + compute chemical conditioning



The numerical model: THYC-Puffer-DEPO

» THYC-Puffer-DEPO (TPD) is the chaining of 3 codes — allows to
simulate SG clogging on entire lifespan of the asset integrating past
chemical cleanings and predicting future 7. states — takes into
account the chemical pH of the secondary fluid

» THYC [Petit, 1991] is based on a finite-volume numerical scheme
for the two-phase conservation equations

» Puffer is an in-house chemical code allowing to compute the
solubility of iron oxides as a function of pH — used in the deposit
model

» DEPO [Prusek et al., 2013] is the deposit module, solving the
transport and clogging equations with iterative finite-differences
schemes methods

» The chaining of these three codes is made on different criteria, more
details are found in [Jaber et al., 2024]— unitary call is ~ 5h on
HPC infrastructure



Design

of experiments

Some experts exhibited a number of uncertain variables in the
clogging model — prior work done in [Lefebvre et al., 2023]

In the DEPO module model, variables X = (Xi,..., Xy) € RY, with
d =7 — how these parameters affect the long term 7. prognosis
uncertainty? — sensitivity analysis - work done in [Jaber et al.,
2024]

Assume X ~ p=U(h)® ... U(ly) with support intervals given
by experts and code designers — use Latin Hypercube Sampling to
draw n = 102 points and build

DoE[}ig'(X) = {(X©, g(X)}1, (1)

Output is a vector g(X) = (g(X, t1),...,&(X, ty)) of reduced
dimension N ~ 102



Uncertainty propagation numerical results

LHS DoE of THYC-Puffer-DEPO and available data
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X2, high pH
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Figure: lllustration of output of DoE[j;S(X) on a specific SG for a given
simulation time, available field and regression data, the present time tp is
highlighted in orange
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Bayesian calibration methodology for RUL update

» Sensitivity analysis results highlight potential dependence on the
output of X7 = 0 — parameter related to the vena contracta
phenomenon in the deposit model [Prusek et al., 2013]

» Idea: use the available field & regression data to update the prior
distribution of # — reduce the future prediction uncertainty

p(a®) p(al|y™®) p(aj|y™P)

MCMC
4 Algorithms 2 ——
< —_— Z

¢
4« 4 \
| 4 P
g "
i L
@ i

plah)= 10" =pla?) ~U[0,15] x 1074 Updated RUL!

Prior distributions Multifidelity data Posterior distributions

(a3)

surrogate i 2]
i

Figure: Bayesian calibration methodology for updating the RUL — make
use of Markov-Chain Monte-Carlo (MCMC) algorithm with optimized
Gaussian process surrogate (GP) of the code. The multifidelity data
comprises field data (FD) and regression data (RD)



Bayesian calibration formalism

» Three distributions of 6 are calibrated for each period — before
curative cleaning (CC), between curative cleaning and preventive
cleaning (CC-PC), and after preventive cleaning (PC) — choice
justified by the observed change in kinetics after a chemical cleaning

» Build, optimize & use a GP surrogate model grpp for fast sampling
(since actual model calls are time-prohibitive) — procedure based
on m = n+ 1 calibrations where n is the number of cleanings
performed on a SG (in this example m = 3)

» Data between the k-th and k + 1-th chemical cleaning:
{ye = kvt C s ymd ()

Je k are the respective time step indices, n, x := |7, k| with
x = {FD,RD}



Bayesian calibration formalism

» Without model discrepancy, assume [Carmassi et al., 2019] for
k=1,...,m, with x = {FD,RD}:

Yi = Gil0) +mi, mi ~ N(0,021,. ) (3)

where G applies the projection of the outputs of the surrogate
model grpp onto time steps of the x-th data between the k-th and
k + 1-th chemical cleaning

» Choice of priors for all k:
> 0, ~U[0,15] x 10~*
> Jeffreys prior for v :=1/02, p(v) = 1/v
» 0, and n are independent — residuals give a Gaussian
likelihood

» If all field data have the same standard deviation, then we can show
that [Keller et al., 2022]:

p(Oklye) o< llye — GO~ (4)



Bayesian calibration formalism

» This posterior distribution can be generalized for g groups of

multifidelity data (y®®1, ... y®®9) with different variances (in our
case g = 2 since FD and RD have different variances) for
k=1,...,m:

P(Oklyf®, yEP) o< [lyEP = GEP ()] 7" x [[yfP — GRP(6,) || "o+

» \Weight associated with the x data type — related to the number of
data points NED, k; NRD, k-

» MCMC algorithm of the Random-Walk Metropolis-Hastings type
[Rubinstein and Kroese, 2011] in OpenTURNS Python library —
sampling from distributions p(/;|yfP, yRP) + Gelman-Rubin
convergence test for Markov chains


https://openturns.github.io/www/

Numerical results
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Figure: Prior and MCMC-sampled posterior distributions of the
calibration parameter 6 — different modes after the different chemical

cleaning actions — confirms the prior operational knowledge and informs
the physical model — hybrid approach!



Updated uncertainty propagation

TPD simulations with prior distributions and after @ calibration
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Figure: Uncertainty propagation with regular U(h) ® ... @ U(Il4) vs.
updated posterior U(h) @ ... @ U(l4—1) @ p(0]yRP, yP) — dispersion
next to tp is highly reduced — decision-making more robust!
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Summary

» Clogging of SGs in PWR is a degradation phenomenon requiring
diagnosis and prognosis for chemical cleaning planning — complex
phenomenon, hard to model

» Making use of available knowledge to help decision-making in
uncertain field — UQ methodology + Bayesian calibration allow to
give more robust predictions

» Build controllable predictive machine learning algorithms that could
be pilotable — based on sensor time-series operational data placed
on the SG and the PWR — work in progress

» Hybrid methodology could be generalized to other degradation
phenomena to provide decision-making assistance for predictive
maintenance



Thank you for your attention!
Any questions?

reach me out at edgar. jaber@ens-paris-saclay.fr


mailto:edgar.jaber@ens-paris-saclay.fr
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Sensitivity analysis: HSIC

» Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al.,
2005], kernel method — evaluates sensitivity of a single-input in a
given-data context, no need for surrogate models

» Theoretical result for all j € {1,...,d}, ke {1,...,N}:
HSlC(X,,g(X tk)) =0« X; L g(X, tk) (5)

» The index disposes of U-stat and V-stat estimators + hypothesis
testing with corresponding p-value — implemented in the
OpenTURNS

> The normalized Rfgc index is better suited for interpretation:

HSIC(X:, g(X, t))
/(HSIC(X;, X;)HSIC(g (X, &), g(X, t&)))

Risic(Xi, g(X, 1)) = €[0,1]

> Empirical evidence suggests show that Rjs,c can be used
confidently for variable ranking — HSIC-ANOVA decompositions
also exist but only pathological cases create stark differences (see
[Sarazin et al., 2023])


https://openturns.github.io/www/

Prior HSIC results
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Figure: Normalized HSIC index time variation, ranking displays a
potential strong dependence of X7 on the output — X7 = 0 is the
calibration parameter of the DEPO model — drives the 7. kinetics



Posterior HSIC indices
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Figure: Normalized HSIC index time variation after calibration — displays
consequent influence reduction of the X7 calibration component on the
output
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