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Clogging of steam generators (SGs)

▶ Clogging of SGs is a complex multiphysics phenomenon that
occurs following long operational periods in pressurized-water
reactors (PWR) of the French nuclear fleet→ undermines
performance & weakens the structures→ may require chemical
cleanings

▶

Figure: PWR scheme, and example of video examination during
a PWR outage (© IRSN, EDF)
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Clogging of SGs

▶ No state-of-the-art model allowing for ground insights on
diagnosis and prognosis of clogging rate τc → very hard to model
& challenging to create reproducible lab experiment for model
validation + not a lot of literature [Srikantiah and Chappidi, 2000;
Prusek et al., 2013; Girard, 2014; Yang et al., 2017]

▶ Available scarce video field data as well as indirect
measurements→ allow to construct data-driven regression
algorithms [Pinciroli et al., 2021] ≈ not enough data to have
robust predictive models

▶ Another tool is the physical clogging model developed by
[Prusek et al., 2013]→ subsequent numerical model
THYC-Puffer-DEPO [Feng et al., 2023] ≈ lack of enough
trustworthy field data for precise validation

▶ Necessary decision-making on chemical cleaning planning
under uncertainty→ how to make use of the available
knowledge and models for achieving reliable predictions?
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Introduction

▶ Industrial engineering systems such as airplane blades,
concrete structures in bridges, components in nuclear reactors
→ subject to complex physics and regular loads→ degrade over
time, need maintenance or replacement especially in critical
applications

▶ Degradation level t 7→ δ(t) for an industrial system→ objective is
to predict remaining useful life (RUL) [Biggio and Kastanis,
2020] for a fixed threshold D ∈ R+:

RUL(D) = argmin
t1<t≤tN

{δ(t) ≥ D} (1)

▶ Usually relies on physics-based simulation codes, and/or data
driven methods

▶ RUL prediction with each individual approach is not robust→
high level of uncertainty & individual predictions not fully reliable
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Introduction

Available tools:
▶ Physics-based computer simulation model g : X ⊂ Rd → RN

with prior uncertainty on input variables X = (X1, . . . ,Xd) ∼ µX →
one input value x0 gives the trajectory
g(x0) = (g(t1, x0), . . . , g(tN, x0)) where prℓ ◦ g(X) := g(tℓ,X)
approximates δ(tℓ)

▶ Surrogate modeling strategy ĝ if code is time-costly such that ĝ
approximates g with less computation effort

▶ q heterogeneous degradation data groups y1, . . . , yq with
different sizes yi ∈ Rmi → corresponding to different time indices
in Ji so that J = ∪qi=1Ji and |J | = m1 + . . .+mq, we suppose
that:

yi(tℓ) = g(tℓ,X) + ηiℓ, (2)
with ηiℓ ∼ N (0, σ2

i )→ homoskedastic noise for each data group
▶ How to fuse these tools for hybrid RUL estimation of the system?
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Offline data assimilation

▶ A single input parameter X = x0 produces an entire degradation
trajectory g(x0) = (g(t1, x0), . . . , g(tN, x0)), which is generally not
a Markov chain→ cannot use data assimilation (considered
state of the art hybrid method [Jouin et al., 2016])

▶ Scarcity of data, packed in groups→ no arrival of new data
points on the fly→ offline data assimilation is suitable for this
context, similar to Bayesian calibration of computer models

▶ The objective is to estimate the posterior distribution
p̂(θ|y1, . . . , yq) of influential parameters θ ∈ X

▶ This enables obtaining an updated distribution for the state
variable via the pushforward g#p̂(θ|y1, . . . , yq)

▶ The probabilistic RUL is determined by its conditioned
cumulative distribution function:

P(RUL(D) ≤ tℓ|y1, . . . , yq) =
∫
R
1{z ≥ D}(prℓ+1◦g)#p̂(θ|y1, . . . , yq)(z)dz
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Methodology

Figure: Proposed 5-steps algorithm
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Step 1

Perform k iterations where 1 ≤ k ≤ d:
1. If k = 0, assume uniform independent priors µX,k ' U [−1, 1]⊗d →

generate a design of experiments DoEµX,k
g = {(X(j), g(X(j)))}1≤j≤n
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Step 2

2. Compute HSIC indices [Gretton et al., 2005] between input
variables and outputs at data time instances→ given data
sensitivity analysis method to assess individual input variable
influence on the output
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Step 3

3. If g is time-costly, build and validate p metamodels
ĝ = (ĝ(1), . . . , ĝ(p)) with chosen strategy→ avoid metamodeling
bias with convex aggregation on the unit-simplex chosing
w ∈ ∆p−1 := {w ∈ [0, 1]p, ‖w‖1 = 1}, fix nominal value of
U0,k = u0,k by taking the mean
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Step 4

4. Estimate the posterior distribution p̂(θk|y1, . . . , yq,u0,k) with an
MCMC sampling procedure
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Step 5

5. Compute the Kullback-Leibler divergence dKL between prior
distribution U(θk) and the estimated density:
▶ If dKL > ε, update the prior µX,k by replacing marginal U(θk)

with p̂(θk|y1, . . . , yq,u0,k) and continue k← k+ 1
▶ Otherwise, stop and obtain an updated RUL prediction by

computing g#µX,k
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Bayesian updating step 4

Proposition
Assume λ := 1/σ2

η ∼ G(m2 ,
1
2‖y− f(θ)‖2) (Gamma distribution), where

m is the number of data points in y; θ ∼ U(θ), and p(θ, λ) ∝ λ−1.
Then:

p(θ|y) ∝ ‖y− f(θ)‖−m (3)
Moreover, if multiple groups of data at different time-instances are
considered, y1, . . . , yq, with respective priors on the inverse of their
standard deviations λi ∼ G(mi

2 ,
1
2‖yi − f(θ)‖2), then the generalization

is:

p(θ|y1, . . . , yq) ∝
q∏

i=1

‖yi − f(θ)‖−mi (4)

Proof. Bayes’ theorem and simplifications.
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Bayesian updating step 4

p(θk|y1, . . . , yq,u0,k) ∝
1

M

M∑
r=1

q∏
i=1

‖yi − 〈w(r), ĝ(u0,k, θk)〉‖−mi (5)

▶ Use Random Walk Metropolis-Hastings (RWMH) MCMC
algorithm [Sullivan, 2015] to sample from (5)

▶ Monte-Carlo integration using sample {w(r)}Mr=1 from the
Dirichlet-1p distribution on the simplex→ integrate
hyperparameter

▶ Test convergence of RWMH chains with Gelman-Rubin test
[Gelman and Rubin, 1992]

▶ Updated densities are conditioned on nominal values u0,k of
other d− 1 input variables→ future work on how to integrate
uncertainty

▶ Use log-sum-exp trick for numerical computation
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Results

▶ Computer code THYC-Puffer-DEPO, complex multiphysics
[Jaber et al., 2024b] , chaining of 3 codes→ allows to simulate
SG clogging on entire lifespan of the asset integrating past
chemical cleanings and predicting future τc levels

▶ Two data groups q = 2, corresponding to field data and
regression data

Input variable Distribution
α U(100, 103)
β U(0.02, 0.025)
ϵe U(0.2, 0.5)
ϵc U(0.01, 0.3)
dp U(0.5, 10.0)× 10−6

Γp(0) U(1.0, 8.0)× 10−9

av U(0, 15)× 10−4

Table: Probabilistic modeling of uncertain input variables
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Results: posterior distributions

▶ 3 independent calibrations for scenarios after maintenances,
p = 12 metamodels, 5 MCMC chains are launched for GR
convergence test, use uniform proposal distributions

▶ Computing time around 40 min→ 5/7 distributions are informed
by the data, distinct modes for av

Figure: Posterior distributions of TPD clogging simulation code
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Results: posterior trajectories

Figure: Prior/posterior TPD emulations with Karhunen-Loève
expansion metamodel
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Results: posterior RUL

▶ RUL prediction uncertainty substantially reduced and mean of
the distribution is shifted compared to the prior→ positive impact
for maintenance planning
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Summary

▶ Presented an iterative algorithm leveraging kernel sensitivity
analysis (HSIC) to identify individual influential variables and
update priors→ acting sequentially on each marginal to keep
independence assumption for all dimensions→ avoids
cross-correlation in MCMC and curse of dimensionality

▶ Methodology works with a metamodeling step, enriched at each
iteration by an optimization + aggregation of the metamodels on
the refined DoEs to avoid bias in the posteriors

▶ The method integrates the noise uncertainty and works with
heteroskedastic groups of data points

▶ Demonstrated the approach on industrial steam generator
clogging, showing improved posterior inference and reduced
RUL uncertainty

▶ Methodology is general and can be adapted to other industrial
prognostics problems with scarce and heterogeneous data→
GitHub repository

https://github.com/EdgarJaber/bayes-calibration-for-prognostics.git
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Some extensions and future work

▶ How to integrate uncertainty in nominal parameters uk?
▶ Prior work on adaptive conformal prediction for GP surrogate

models validation [Jaber et al., 2024a]→ to appear in Journal of
Machine Learning for Modeling and Computing

▶ We define the cross-conformal estimator at a new point Xn+1

using the posterior mean of the GP g̃ and the posterior variance
γ̃:

ĈJ+GP
n,α (Xn+1) =

[
q̂ ±
n,α

{
g̃−i(Xn+1)± RLOOγ

i × γ̃−i(Xn+1)
}]

(6)

where RLOOγ
i is the Leave-One-Out error normalized by γ̃

▶ Since the intervals are adaptive, one can use it as a proxy for
metamodel accuracy→ perform active learning during MCMC
evaluations to refine surrogates

▶ Available GitHub repository

https://www.j-mlmc.com
https://www.j-mlmc.com
https://github.com/vincentblot28/conformalized_gp.git
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Thank you for your attention!
Any questions?

Figure: Bayesian fusion Figure: GitHub repository

Figure: CP+GP

reach me out at edgar.jaber@ens-paris-saclay.fr

mailto:edgar.jaber@ens-paris-saclay.fr
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Sensitivity analysis: HSIC
▶ Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al.,

2005], kernel method→ evaluates sensitivity of a single-input in
a given-data context, no need for surrogate models

▶ Theoretical result for all i ∈ {1, . . . , d}, k ∈ {1, . . . ,N}:

HSIC(Xi, g(X, tk)) = 0⇐⇒ Xi ⊥ g(X, tk) (7)

▶ The index disposes of U-stat and V-stat estimators + hypothesis
testing with corresponding p-value→ implemented in the
OpenTURNS

▶ The normalized R2
HSIC index is better suited for interpretation:

R2
HSIC(Xi, g(X, tk)) =

HSIC(Xi, g(X, tk))√
(HSIC(Xi,Xi)HSIC(g(X, tk), g(X, tk)))

∈ [0, 1]

▶ Empirical evidence suggests that R2
HSIC can be used confidently

for variable ranking→ HSIC-ANOVA decompositions also exist
but only pathological cases create stark differences (see
[Sarazin et al., 2022])

https://openturns.github.io/www/
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Metamodeling step 3
The metamodeling process involves:
▶ Data generation: Using the DoE of g at n input samples
{X(i)}ni=1 ∼ µX, assemble the data matrix:

Y =
[
g(X(1)), . . . , g(X(n))

]
∈ RN×n (8)

▶ Dimensionality reduction: Apply a Karhunen–Loève (KL)
decomposition [Sullivan, 2015] using the empirical covariance
matrix Ĉ = 1

nYY⊤. Perform singular value decomposition (SVD):

Y = VΣW⊤, (9)

where V contains the KL modes {Φk}mk=1, and Σ holds the
singular values.

▶ Mode selection: Retain m modes to capture a prescribed
variance (e.g., 99%). Project trajectories onto the retained
modes:

ξk(X(i)) = g(X(i))⊤Φk, k = 1, . . . ,m (10)
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Metamodeling step 3

▶ Surrogate modeling: For each mode k, construct a surrogate
model ξ̂k(X) using a Gaussian process [Rasmussen and
Williams, 2006] with identical prior mean and kernel for all modes

▶ Reconstruction: Reconstruct the full trajectory using the
surrogate models:

ĝ(X) =
m∑

k=1

ξ̂k(X)Φk (11)

▶ Aggregation: Combine multiple surrogate models {ĝ(i)}pi=1 using
convex aggregation weights w ∈ ∆p−1 to form the aggregated
surrogate model:

ĝ agg(X) =
p∑

i=1

wiĝ(i)(X) (12)

This ensures robustness by leveraging multiple models while
minimizing bias
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