Conformal Prediction for Surrogate Modeling with Gaussian Processes

Edgar Jaber

CP5 Session - 02/27/24 - SIAM-UQ 2024 - Trieste, Italy

Joint work with: V. Blot, N. Brunel (Quantmetry), V. Chabridon, E. Remy, B. Iooss (EDF R&D), D. Lucor (LISN), M. Mougeot (Centre Borelli)

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 1/29

Conformal prediction (CP) paradigm

Gaussian process (GP) surrogates

Conformal Gaussian processes

Conclusion

Appendix

Problem formulation

Conformal prediction (CP) paradigm

Gaussian process (GP) surrogates

Conformal Gaussian processes

Conclusion

Appendix

- Computer code g : X → Y, with X, Y measurable spaces, used in industry applications
- Uncertainty Quantification (UQ) methodology: how uncertainty on the inputs X affects our knowledge of the output g(X)?

Figure: General UQ methodology [De Rocquigny et al., 2008].

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで 4/29

- Some codes are time-costly \rightarrow use of surrogates \widehat{g}
- Surrogates (or metamodels) facilitate heavy Monte Carlo batch runs and/or sensitivity analysis → in Step C, C'
- ► Assess the *quality* of these surrogates (decision making, trust in simulation outputs, ...) → metamodel *validation*
- Metamodel validation is still a debated topic and has open questions → no consensus on a best methodology
- ▶ Gaussian Processes (GPs) are a type of Bayesian metamodels \rightarrow with a notion of *uncertainty* \rightarrow but needs hypotheses to be interpreted
- Idea: use Conformal Prediction (CP) paradigm [Vovk et al., 2005] which is a generic, model-agnostic theory allowing to build prediction sets with frequentist coverage guarantees.
- Possibly useful for *qualifying* GP surrogate models?

process surrogate models

Problem formulation

Conformal prediction (CP) paradigm General CP in regression The Jackknife+/minmax estimators

Gaussian process (GP) surrogates

Conformal Gaussian processes

Conclusion

Appendix

CP in regression setting

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

[Vovk et al., 2005] Let $\mathcal{Z} := \mathcal{X} \times \mathcal{Y}$. Let $n \in \mathbb{N}$ and $\mathcal{D}_n = \{Z_1, \ldots, Z_n\} \in \mathbb{Z}^n$ a training sample. For $\alpha \in (0, 1)$, a conformal predictor of coverage $1 - \alpha$ is any measurable function of the form:

$$C_{\alpha} \colon \mathcal{Z}^{n} \times \mathcal{X} \to 2^{\mathcal{Y}}$$
$$(\mathcal{D}_{n}, X) \mapsto C_{n,\alpha}(X),$$
(1)

s.t. for any new couple of points $Z_{n+1} = (X_{n+1}, Y_{n+1}) \in \mathbb{Z}$ (marginal coverage property):

$$\mathbb{P}\left(Y_{n+1} \in C_{n,\alpha}(X_{n+1})\right) \ge 1 - \alpha.$$
(2)

Three main methods for estimating conformal-predictors: full-conformal, split-conformal (see [Angelopoulos and Bates, 2023]) and cross conformal estimators \rightarrow focus on the latter

Jackknife+/minmax interval estimators

 $\blacktriangleright g: \mathcal{X} \subseteq \mathbb{R}^d \longrightarrow \mathcal{Y} \subseteq \mathbb{R}$

▶ $D_n = \{(X_1, g(X_1)), \dots, (X_n, g(X_n))\}$ an <u>i.i.d.</u> design of experiments

- ▶ With empirical quantile of LOO residues \rightarrow can build interval estimators: Jackknife+ $\hat{C}_{n,\alpha}^{J+}$ & Jackknife-minmax $\hat{C}_{n,\alpha}^{J-minmax}$

Estimators	$\widehat{C}_{n,\alpha}^{J+}$	$\widehat{\mathcal{C}}_{n,lpha}^{J-minmax}$
Marginal coverage	$lpha\in (0,1/2)$	$lpha\in(0,1)$
+	Cross-validation method Fast to compute	Coverage property
—	Constant width	Width is too large

Table: Main cross-conformal estimators pros and cons.

Problem formulation

Conformal prediction (CP) paradigm

Gaussian process (GP) surrogates

Conformal Gaussian processes

Conclusion

Appendix

< □ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q ℃ 10/29

Gaussian process (GP) surrogates

- GP metamodel prediction is the *posterior mean* $\hat{g} = \tilde{g}$.
- \blacktriangleright Notion of uncertainty through the posterior covariance $\widetilde{\gamma}$ and the Gaussian structure of the metamodel.

Bayesian credibility intervals

• Credibility intervals of the posterior GP, for any new point $X_{n+1} \in \mathcal{X}, \ \alpha \in (0,1)$:

$$C\mathcal{R}_{\alpha}(X_{n+1}) = \left[\widetilde{g}(X_{n+1}) \pm u_{1-\alpha/2} \widetilde{\gamma}(X_{n+1}) \right].$$
(3)

► Has the conditional coverage property (stronger than marginal):

$$\mathbb{P}\left(g(X_{n+1}) \in \mathcal{CR}_{\alpha}(X_{n+1}) \mid \mathcal{D}_n\right) = 1 - \alpha.$$
(4)

- 1. g is modeled by $\mathcal{G} \sim \mathcal{GP}(M, K)$
- 2. priors mean and covariance functions M, K are well-specified.
- No generic way to test these two hypotheses when metamodeling black-box computer codes → a real challenge for industrial application of UQ.

Problem formulation

Conformal prediction (CP) paradigm

Gaussian process (GP) surrogates

Conformal Gaussian processes The proposed J+GP estimator GP qualification methodology Industrial use case

Conclusion

Appendix

The proposed J+GP estimator

- Optimize the hyperparameters of the GP kernel.
- Posterior mean \widetilde{g} and standard-deviation $\widetilde{\gamma} = \widetilde{K}^{1/2}$.
- Define the Leave-One-Out-Gaussian (LOO γ) error:

$$R_i^{LOO\gamma} := \frac{|g(X_i) - \widetilde{g}_{-i}(X_i)|}{\widetilde{\gamma}_{-i}^{\beta}(X_i)}, \ \forall \beta \in \mathbb{N}.$$
 (5)

Main result and consequences [Jaber et al., 2024a]

$$\widehat{C}_{n,\alpha}^{J+GP}(X_{n+1}) = \left[\widehat{q}_{n,\alpha}^{\pm}\left\{\widetilde{g}_{-i}(X_{n+1}) \pm R_{i}^{LOO\gamma} \times \widetilde{\gamma}_{-i}^{\beta}(X_{n+1})\right\}\right]$$
(6)

- Coverage property still verified for $\alpha \in (0, 1/2)$
- ▶ Intervals have adaptive width → more informative
- No hypotheses for interpreting the interval!
- The J+GP-minmax variant has the same properties

Proposed methodology for GP qualification

On a test-set $\mathcal{D}_m \neq \mathcal{D}_n$: compare different GPs as well as classical cross-CP and Bayesian credibility sets by computing:

the predictivity coefficient:

$$Q^{2} = 1 - \sum_{i=1}^{m} \frac{|g(X_{i}) - \tilde{g}(X_{i})|^{2}}{\operatorname{Var}(g(X_{i}))}.$$
(7)

• the empirical coverage for usual α thresholds (1%, 5%, 10%):

$$\frac{1}{m}\sum_{i=1}^m \mathbb{I}\left\{g(X_i)\in\widehat{C}^*_{n,\alpha}(X_i)\right\}\gtrsim 1-\alpha.$$

the adaptivity, by use of the Spearman correlation coefficient r_s between the width of the interval and the metamodel error:

$$0 \ll r_{s}\left(\{(\ell(\widehat{C}_{n,\alpha}^{*}(X_{i})), |g(X_{i}) - \widetilde{g}(X_{i})|)\}_{i \in \{1,...,m\}}\right)$$

< □ > < @ > < E > < E > E の Q @ 15/29

Industrial use case

► The steam generator (SG) → heat exchanger between the primary and secondary circuits of a nuclear power plant (NPP).

Figure: NPP Scheme

► Corrosion in the secondary circuit produces iron oxide impurities → clogging of the SG over time, requires maintenance.

Figure: video examination during an PWR outage (© EDF)

Industrial use case

► EDF *time-costly* steam-generator clogging simulation code [Jaber et al., 2024b], input dimension $d = 7 \rightarrow$ GP metamodel with Matérn- ν covariance priors, with hyperparameters optimized (σ, θ) by MLE:

$$K(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{|x-x'|}{\theta}\right)^{\nu} K_{\nu}\left(\sqrt{2\nu} \frac{|x-x'|}{\theta}\right)$$

- Parameter ν governs the *regularity* of the metamodel
- Crude Monte Carlo design of experiments of 10³ points, 80% used for training and 20% for testing/qualification.

Component	Distribution	Component	Distribution
$X^{(1)}$	$\mathcal{N}(101.6, 4.0)$	X ⁽⁵⁾	${\cal T}(0.5, 5.0, 10.0) imes 10^{-6}$
X ⁽²⁾	$\mathcal{N}(0.0233, 0.0005)$	X ⁽⁶⁾	$\mathcal{T}(extsf{1.0}, extsf{4.5}, extsf{8.0}) imes extsf{10}^{- extsf{9}}$
X ⁽³⁾	$\mathcal{T}(0.2, 0.3, 0.5)$	X ⁽⁷⁾	${\cal T}(0.1,7.8,12) imes 10^{-4}$
X ⁽⁴⁾	$\mathcal{T}(0.01, 0.05, 0.3)$		

Table: Distributions of the input components of the clogging code. How to quantify the quality of the GP-surrogate in prevision? \rightarrow UQ with adaptive conformal predictors!

Average widths / correlation, $\alpha = 0.05$, $\beta = 1/2$

 \checkmark / \checkmark : empirical coverage is / is not achieved.

ν	Q^2	\mathcal{CR}_{lpha}	$\widehat{C}_{n,\alpha}^{J-mm}$	$\widehat{C}_{n,\alpha}^{J-mm-GP}$
1/2	0.990	5.6 🗸	3.9 🗡	3.7 🗡
3/2	0.996	2.4 🗸	2.3 🗡	2.3 🗸
5/2	0.997	1.9 X	2.2 🗸	2.1 🗸

Table: Average widths of prediction intervals and Q^2 .

ν	Q^2	\mathcal{CR}_{lpha}	$\widehat{C}_{n,\alpha}^{J-mm}$	$\widehat{C}_{n,\alpha}^{J-mm-GP}$
1/2	0.990	0.46 🗸	0.66 🗡	0.63 🗡
3/2	0.996	0.35 🗸	0.65 🗡	0.55 🗸
5/2	0.997	0.21 X	0.60 🗸	0.45 🗸

Table: Correlation between widths and GP approximation error and Q^2 .

 \rightarrow A more robust validation of the Matérn-5/2 GP prior!

Problem formulation

Conformal prediction (CP) paradigm

Gaussian process (GP) surrogates

Conformal Gaussian processes

Conclusion

Appendix

Conclusion

- ► A robust uncertainty quantification methodology of GP surrogates with the help of CP can be deployed → better assessment of the metamodel quality for industrial studies
- GitHub Python module, implemented with MAPIE and OpenTURNS libraries
- Further work to include other kernel hyperparameters optimizations, including "nugget-effect", and extensions to other types of metamodels

Figure: ArXiV [2401.07733].

Figure: GitHub repository.

Thank you! Any question?

Problem formulation

Conformal prediction (CP) paradigm

Gaussian process (GP) surrogates

Conformal Gaussian processes

Conclusion

Appendix The Burnaev-Wasserman program

The Jackknife+ estimator

- $\blacktriangleright g: \mathcal{X} \subseteq \mathbb{R}^d \longrightarrow \mathcal{Y} \subseteq \mathbb{R}$
- $\mathcal{D}_n = \{(X_1, g(X_1)), \dots, (X_n, g(X_n))\}$ an <u>i.i.d.</u> design of experiments, X_{n+1} a new point
- ▶ \widehat{g} a surrogate model trained on \mathcal{D}_n , \widehat{g}_{-i} trained on $\mathcal{D}_n \setminus \{(X_i, g(X_i))\}$, and $\widehat{q}_{n,\alpha}^{\pm}(.)$ empirical α -quantile
- ► Leave-One-Out (LOO) error: $R_i^{LOO} := |g(X_i) \hat{g}_{-i}(X_i)|$

Definition

[Barber et al., 2021] The Jackknife+ estimator is given by:

$$\widehat{C}_{n,\alpha}^{J+}(X_{n+1}) = \left[\widehat{q}_{n,\alpha}^{\pm}\left\{\widehat{g}_{-i}(X_{n+1}) \pm R_{i}^{LOO}\right\}\right]$$

- Coverage property verified only for $\alpha \in (0, 1/2)$
- Intervals have almost constant width for all points (including training points) → not that informative

Jacknife-minmax

 [Barber et al., 2021] Replace metamodel prediction with minimum (resp. maximum) of LOO error:

$$\widehat{C}_{n,\alpha}^{J-mm}(X_{n+1}) = \left[\min_{i=1,\dots,n} \{\widehat{g}_{-i}(X_{n+1})\} - \widehat{q}_{n,\alpha}^{-} \{R_i^{LOO}\}, \\ \max_{i=1,\dots,n} \{\widehat{g}_{-i}(X_{n+1})\} + \widehat{q}_{n,\alpha}^{+} \{R_i^{LOO}\}\right].$$
(8)

$$\forall \alpha \in (0,1), \ \mathbb{P}\left(g(X_{n+1}) \in \widehat{C}_{n,\alpha}^{J-\mathsf{mm}}(X_{n+1})\right) \ge 1-\alpha.$$
(9)

The resulting intervals will be more *conservative* i.e. with larger width.

Cross conformal predictors summary

Figure: Jackknife+, and Jacknife-minmax schemes, adapted from [Barber et al., 2021].

The Burnaev-Wasserman program

[Burnaev and Vovk, 2014] Assume that $\mathcal{X} \subset \mathbb{R}^d$, for all *i*, $X_i \in L^2(\Omega)$ and the model *g* is truly Gaussian. The credibility sets have exact coverage and output an interval of the form :

$$\mathcal{CR}_{\alpha}(X_{n+1}) = [B_*, B^*]. \tag{10}$$

The CRR method with the GP rule outputs a prediction interval of the form:

$$\widehat{C}_{n,\alpha}^{CRR}(X_{n+1}) = [C_*, C^*].$$
(11)

A natural question is to compare the differences of the bounds of these two intervals and their asymptotic behaviour

An asymptotic result

See [Burnaev and Vovk, 2014] for a proof of the following.

Theorem

Under the previous assumptions, we get:

$$\sqrt{n} \left(B^* - C^* \right) \xrightarrow[n \to \infty]{\text{Law}} \mathcal{N} \left(0, h(\alpha) \right), \tag{12}$$

and similarly for the lower-bound.

Here *h* is a function of the $(1 - \alpha/2)$ -quantile of the standard normal distribution and of the mean and variance of the input distribution.

CPU dataset, $\alpha = 0.1$, $\beta = 1/2$

 \checkmark / \checkmark : empirical coverage is / is not achieved.

ν	Q^2	\mathcal{CR}_{lpha}	$\widehat{C}_{n,\alpha}^{J+GP}$	$\widehat{C}_{n,\alpha}^{J-mm-GP}$
1/2	0.845	91.6 🗸	28.14 🗸	47.3 🗸
3/2	0.856	72.9 🗸	29.9 🗸	47.1 🗸
5/2	0.854	70.9 🗸	32.1 🗸	49.0 🗸

Table: Average widths of prediction intervals and Q^2 .

ν	Q^2	\mathcal{CR}_{lpha}	$\widehat{C}_{n,\alpha}^{J+GP}$	$\widehat{C}_{n,\alpha}^{J-mm-GP}$
1/2	0.845	0.720 🗸	0.627 🗸	0.782 🗸
3/2	0.856	0.492 🗸	0.485 🗸	0.470 🗸
5/2	0.854	0.626 🗸	0.533 🗸	0.543 🗸

Table: Correlation between widths and GP approximation error and Q^2 .

 \rightarrow The metamodel with the lowest Q^2 is more robust to uncertainty!

References I

- Angelopoulos, A. N. and Bates, S. (2023). Conformal prediction: A gentle introduction. *Foundations and Trends (R) in Machine Learning*, 16(4):494–591.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani., R. J. (2021). Predictive inference with the jackknife+. Annals of Statistics, 486-507, 49.
- Burnaev, E. and Vovk, V. (2014). Efficiency of conformalized ridge regression. In Proceedings of The 27th Conference on Learning Theory, volume 35 of Proceedings of Machine Learning Research, pages 605–622.
- De Rocquigny, E., Devictor, N., and Tarantola, S. (2008). Uncertainty in industrial practice - A guide to quantitative uncertainty managment. Wiley and Sons.

- Jaber, E., Blot, V., Brunel, N., Chabridon, V., Remy, E., Iooss, B., Lucor, D., Mougeot, M., and Leite, A. (2024a). Conformal approach to gaussian process surrogate evaluation with coverage guarantees.
- Jaber, E., Chabridon, V., Remy, E., Baudin, M., Lucor, D., Mougeot, M., and Iooss, B. (2024b). Sensitivity analyses of a multi-physics long-term clogging model for steam generators.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer, springer edition.

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ ▲ 글 ● 의 Q ○ 29/29