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Problem formulation

▶ Computer code g : X → Y, with X ,Y measurable spaces, used in
industry applications

▶ Uncertainty Quantification (UQ) methodology: how uncertainty on
the inputs X affects our knowledge of the output g(X )?

Figure: General UQ methodology [De Rocquigny et al., 2008].
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Problem formulation

▶ Some codes are time-costly → use of surrogates ĝ

▶ Surrogates (or metamodels) facilitate heavy Monte Carlo batch runs
and/or sensitivity analysis → in Step C, C’

▶ Assess the quality of these surrogates (decision making, trust in
simulation outputs, ...) → metamodel validation

▶ Metamodel validation is still a debated topic and has open questions
→ no consensus on a best methodology

▶ Gaussian Processes (GPs) are a type of Bayesian metamodels →
with a notion of uncertainty → but needs hypotheses to be
interpreted

▶ Idea: use Conformal Prediction (CP) paradigm [Vovk et al., 2005]
which is a generic, model-agnostic theory allowing to build
prediction sets with frequentist coverage guarantees.

▶ Possibly useful for qualifying GP surrogate models?
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Problem formulation



7/29

Table of contents

Problem formulation

Conformal prediction (CP) paradigm
General CP in regression
The Jackknife+/minmax estimators

Gaussian process (GP) surrogates

Conformal Gaussian processes

Conclusion

Appendix



8/29

CP in regression setting

Let (Ω,F ,P) be a probability space.

Definition
[Vovk et al., 2005] Let Z := X × Y. Let n ∈ N and
Dn = {Z1, . . . ,Zn} ∈ Zn a training sample. For α ∈ (0, 1), a conformal
predictor of coverage 1 − α is any measurable function of the form:

Cα : Zn ×X → 2Y

(Dn,X ) 7→ Cn,α(X ),
(1)

s.t. for any new couple of points Zn+1 = (Xn+1,Yn+1) ∈ Z (marginal
coverage property):

P (Yn+1 ∈ Cn,α(Xn+1)) ≥ 1 − α. (2)

Three main methods for estimating conformal-predictors: full-conformal,
split-conformal (see [Angelopoulos and Bates, 2023]) and cross conformal
estimators → focus on the latter
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Jackknife+/minmax interval estimators

▶ g : X ⊆ Rd −→ Y ⊆ R
▶ Dn = {(X1, g(X1)), . . . , (Xn, g(Xn))} an i.i.d. design of experiments

▶ ĝ a surrogate model trained on Dn, ĝ−i leave-one-out (LOO)
surrogate model trained on Dn\{(Xi , g(Xi ))}

▶ With empirical quantile of LOO residues → can build interval
estimators: Jackknife+ Ĉ J+

n,α & Jackknife-minmax Ĉ J−minmax
n,α

Estimators Ĉ J+
n,α Ĉ J−minmax

n,α

Marginal coverage α ∈ (0, 1/2) α ∈ (0, 1)

+
Cross-validation method

Fast to compute Coverage property

− Constant width Width is too large

Table: Main cross-conformal estimators pros and cons.
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Gaussian process (GP) surrogates

▶ GP metamodel prediction is the posterior mean ĝ = g̃ .

▶ Notion of uncertainty through the posterior covariance γ̃ and the
Gaussian structure of the metamodel.
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Bayesian credibility intervals

▶ Credibility intervals of the posterior GP, for any new point
Xn+1 ∈ X , α ∈ (0, 1):

CRα(Xn+1) =
[
g̃(Xn+1)± u1−α/2γ̃(Xn+1)

]
. (3)

▶ Has the conditional coverage property (stronger than marginal):

P (g(Xn+1) ∈ CRα(Xn+1) | Dn) = 1 − α. (4)

▶ However, the above equality relies on two hypotheses:

1. g is modeled by G ∼ GP(M,K )
2. priors mean and covariance functions M,K are well-specified.

▶ No generic way to test these two hypotheses when metamodeling
black-box computer codes → a real challenge for industrial
application of UQ.
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The proposed J+GP estimator
▶ Optimize the hyperparameters of the GP kernel.

▶ Posterior mean g̃ and standard-deviation γ̃ = K̃ 1/2.

▶ Define the Leave-One-Out-Gaussian (LOOγ) error:

RLOOγ
i :=

|g(Xi )− g̃−i (Xi )|
γ̃β
−i (Xi )

, ∀β ∈ N. (5)

Main result and consequences [Jaber et al., 2024a]

Ĉ J+GP
n,α (Xn+1) =

[
q̂
+−
n,α

{
g̃−i (Xn+1) +− RLOOγ

i × γ̃ β
−i (Xn+1)

}]
(6)

▶ Coverage property still verified for α ∈ (0, 1/2)

▶ Intervals have adaptive width → more informative

▶ No hypotheses for interpreting the interval!

▶ The J+GP-minmax variant has the same properties
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Proposed methodology for GP qualification

On a test-set Dm ̸= Dn: compare different GPs as well as classical
cross-CP and Bayesian credibility sets by computing:

▶ the predictivity coefficient:

Q2 = 1 −
m∑
i=1

|g(Xi )− g̃(Xi )|2

Var(g(Xi ))
. (7)

▶ the empirical coverage for usual α thresholds (1%, 5%, 10%):

1
m

m∑
i=1

1

{
g(Xi ) ∈ Ĉ∗

n,α(Xi )
}
≳ 1 − α.

▶ the adaptivity, by use of the Spearman correlation coefficient rs
between the width of the interval and the metamodel error:

0 ≪ rs
(
{(ℓ(Ĉ∗

n,α(Xi )), |g(Xi )− g̃(Xi )|)}i∈{1,...,m}

)
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Industrial use case
▶ The steam generator (SG) → heat exchanger between the primary

and secondary circuits of a nuclear power plant (NPP).

Figure: NPP Scheme
▶ Corrosion in the secondary circuit produces iron oxide impurities →

clogging of the SG over time, requires maintenance.

Figure: video examination during an PWR outage (© EDF)
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Industrial use case
▶ EDF time-costly steam-generator clogging simulation code [Jaber

et al., 2024b], input dimension d = 7 → GP metamodel with
Matérn-ν covariance priors, with hyperparameters optimized (σ, θ)
by MLE:

K (x , x ′) = σ2 21−ν

Γ(ν)

(√
2ν

|x − x ′|
θ

)ν

Kν

(√
2ν

|x − x ′|
θ

)
.

▶ Parameter ν governs the regularity of the metamodel

▶ Crude Monte Carlo design of experiments of 103 points, 80% used
for training and 20% for testing/qualification.

Component Distribution Component Distribution
X (1) N (101.6, 4.0) X (5) T (0.5, 5.0, 10.0) × 10−6

X (2) N (0.0233, 0.0005) X (6) T (1.0, 4.5, 8.0) × 10−9

X (3) T (0.2, 0.3, 0.5) X (7) T (0.1, 7.8, 12) × 10−4

X (4) T (0.01, 0.05, 0.3)

Table: Distributions of the input components of the clogging code.
How to quantify the quality of the GP-surrogate in prevision?
→ UQ with adaptive conformal predictors!
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Average widths / correlation, α = 0.05, β = 1/2

✓/ ✗: empirical coverage is / is not achieved.

ν Q2 CRα Ĉ J−mm
n,α Ĉ J−mm−GP

n,α

1/2 0.990 5.6 ✓ 3.9 ✗ 3.7 ✗

3/2 0.996 2.4 ✓ 2.3 ✗ 2.3 ✓

5/2 0.997 1.9 ✗ 2.2 ✓ 2.1 ✓

Table: Average widths of prediction intervals and Q2.

ν Q2 CRα Ĉ J−mm
n,α Ĉ J−mm−GP

n,α

1/2 0.990 0.46 ✓ 0.66 ✗ 0.63 ✗

3/2 0.996 0.35 ✓ 0.65 ✗ 0.55 ✓

5/2 0.997 0.21 ✗ 0.60 ✓ 0.45 ✓

Table: Correlation between widths and GP approximation error and Q2.

→ A more robust validation of the Matérn-5/2 GP prior!
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Conclusion
▶ A robust uncertainty quantification methodology of GP surrogates

with the help of CP can be deployed → better assessment of the
metamodel quality for industrial studies

▶ GitHub Python module, implemented with MAPIE and
OpenTURNS libraries

▶ Further work to include other kernel hyperparameters optimizations,
including "nugget-effect", and extensions to other types of
metamodels

Figure: ArXiV [2401.07733]. Figure: GitHub repository.

Thank you! Any question?

https://mapie.readthedocs.io/en/latest/
https://openturns.github.io
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The Jackknife+ estimator
▶ g : X ⊆ Rd −→ Y ⊆ R
▶ Dn = {(X1, g(X1)), . . . , (Xn, g(Xn))} an i.i.d. design of experiments,

Xn+1 a new point

▶ ĝ a surrogate model trained on Dn, ĝ−i trained on
Dn\{(Xi , g(Xi ))}, and q̂ ±

n,α(.) empirical α-quantile

▶ Leave-One-Out (LOO) error: RLOO
i := |g(Xi )− ĝ−i (Xi )|

Definition
[Barber et al., 2021] The Jackknife+ estimator is given by:

Ĉ J+
n,α(Xn+1) =

[
q̂
+−
n,α

{
ĝ−i (Xn+1) +− RLOO

i

}]
▶ Coverage property verified only for α ∈ (0, 1/2)

▶ Intervals have almost constant width for all points (including
training points) → not that informative
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Jacknife-minmax

▶ [Barber et al., 2021] Replace metamodel prediction with minimum
(resp. maximum) of LOO error:

Ĉ J−mm
n,α (Xn+1) =

[
min

i=1,...,n
{ĝ−i (Xn+1)} − q̂ −

n,α

{
RLOO
i

}
,

max
i=1,...,n

{ĝ−i (Xn+1)}+ q̂ +
n,α

{
RLOO
i

}]
.

(8)

▶ Prediction intervals → not centered anymore but have marginal
coverage guarantee:

∀α ∈ (0, 1), P
(
g(Xn+1) ∈ Ĉ J−mm

n,α (Xn+1)
)
≥ 1 − α. (9)

▶ The resulting intervals will be more conservative i.e. with larger
width.
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Cross conformal predictors summary

Figure: Jackknife+, and Jacknife-minmax schemes, adapted from [Barber
et al., 2021].
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The Burnaev-Wasserman program

[Burnaev and Vovk, 2014] Assume that X ⊂ Rd , for all i ,
Xi ∈ L2(Ω) and the model g is truly Gaussian. The credibility sets
have exact coverage and output an interval of the form :

CRα(Xn+1) = [B∗,B
∗]. (10)

The CRR method with the GP rule outputs a prediction interval of
the form:

ĈCRR
n,α (Xn+1) = [C∗,C

∗]. (11)

A natural question is to compare the differences of the bounds of
these two intervals and their asymptotic behaviour
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An asymptotic result

See [Burnaev and Vovk, 2014] for a proof of the following.

Theorem
Under the previous assumptions, we get:

√
n (B∗ − C ∗)

Law−−−→
n→∞

N (0, h(α)) , (12)

and similarly for the lower-bound.

Here h is a function of the (1 − α/2)-quantile of the standard
normal distribution and of the mean and variance of the input
distribution.
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CPU dataset, α = 0.1, β = 1/2

✓/ ✗: empirical coverage is / is not achieved.

ν Q2 CRα Ĉ J+GP
n,α Ĉ J−mm−GP

n,α

1/2 0.845 91.6 ✓ 28.14 ✓ 47.3 ✓

3/2 0.856 72.9 ✓ 29.9 ✓ 47.1 ✓

5/2 0.854 70.9 ✓ 32.1 ✓ 49.0 ✓

Table: Average widths of prediction intervals and Q2.

ν Q2 CRα Ĉ J+GP
n,α Ĉ J−mm−GP

n,α

1/2 0.845 0.720 ✓ 0.627 ✓ 0.782 ✓

3/2 0.856 0.492 ✓ 0.485 ✓ 0.470 ✓

5/2 0.854 0.626 ✓ 0.533 ✓ 0.543 ✓

Table: Correlation between widths and GP approximation error and Q2.

→ The metamodel with the lowest Q2 is more robust to
uncertainty!
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